当前位置: 首页 > 创业资料 > 创业资讯 > 大葱移栽机视频

大葱移栽机视频

2017-06-20 09:32:41 编辑: 来源:http://www.chinazhaokao.com 成考报名 浏览:

导读: 大葱移栽机视频(共7篇)[我爱发明]大葱培土种植机 大葱保姆(发明人刘德波)[我爱发明] 20151031 大葱保姆 本期视频主要内容: 大葱在播种后3到4个月时,因为涨势相对密集,需要将葱苗移栽到空间更大的土地里。这样会让大葱生长的更加健硕。而移栽,也是大葱种植的过程中,最复杂的一步。刘德波是山东平度市小戈庄的一位普通农...

篇一 大葱移栽机视频
[我爱发明]大葱培土种植机 大葱保姆(发明人刘德波)

  [我爱发明] 20151031 大葱保姆

  本期视频主要内容: 大葱在播种后3到4个月时,因为涨势相对密集,需要将葱苗移栽到空间更大的土地里。这样会让大葱生长的更加健硕。而移栽,也是大葱种植的过程中,最复杂的一步。刘德波是山东平度市小戈庄的一位普通农民,因为从小看着父亲种植大葱,极度耗费经历。善于动手的他,钻研出来了一台给大葱培土的机器,也正是因为这个帮助大家种植大葱的铁家伙,他成为了当地的发明大王。(《我爱发明》 20151031 大葱保姆)

  发明人:刘德波(13573206675)

  编导手记:山东省青岛平度市的大葱享誉全国,但是种植大葱的环节却繁多复杂,播种,起苗,移栽,培土,收葱。村民门每天早上5点就起来干活,顶着太阳劳作,中午只能在地里吃饭。十分辛苦,而且随着人工的成本不断提高,葱农们的效益却难见提升。

  刘德波,小戈庄里的发明大人,一直经营农机的他,敏锐的注意到了这一点。很早之前就做出了大葱培土机的机器。接触大葱行业多年,随着对于农机技术的不断精进,刘德波开始注意到在平度种植最广的大葱。平时农民种植,特别的辛苦,尤其看到身为葱农的父亲疲惫的身影,刘德波便暗下决心,要做出一台管理大葱的机器。也就是说,在种植大葱的播种,起苗,移栽,培土,收葱的每一步上面,都有机器能够代替,他还真的成功了。(编导:刘宇;摄像:李震)

  

  

  

  

篇二 大葱移栽机视频
[我爱发明]辣椒移栽机 辣椒搬迁队(发明人韩敬哲)

  [我爱发明] 20160721 辣椒搬迁队

  本期节目主要内容: 河南省商丘市柘城县的村民韩敬哲的辣椒移栽机构造很简单,就是通过楔型结构的铲开沟,然后,把辣椒苗放入到烟花筒一样储苗筒内,让其自由落下,正好落入到开好的沟里。到底能不能成功?这台辣椒移栽机究竟能否减轻人们的负担,代替人们来完成劳动呢?敬请收看。(《我爱发明》 20160721 辣椒搬迁队)

  发明人联系方式:韩敬哲

  

  

  

  编辑手记:

  6月,又到了辣椒种植的季节,种辣椒与种大葱类似,在种植过程中,都需要进行移栽,也就是,等到辣椒苗涨到30厘米左右,就得给它们换个更宽敞的新家,让它们茁壮成长。河南省商丘市柘城县的村民们就在为移栽辣椒而忙碌着。

  移栽的过程分为两步,首先,在旋耕完的土地上,村民们用他们特制的“土犁子”先开好一条10厘米深的沟,然后,再将辣椒苗插入,填埋即可,简单来说,就是挖个坑来埋点土。

  看起来,移栽的过程并没有多大难度,可开沟过程实际操作起来,可没有看起来那么简单。在移栽过程中,最重要的就是保持移栽后辣椒苗的直立稳定性,所以村民们在插完苗后,还有一个手抠压实的动作。

  虽然移栽辣椒幼苗并没有什么难度,但是,着实是一件苦差事,尤其是移栽过程,由于没有任何辅助的工具,人们只能蹲在田里,一颗苗一颗苗的进行填土,时间久了是腰酸背痛,膝盖疼,很容易落下病来,那么有没有一台辣椒移栽机能够代替这种简单却又复杂的劳动呢?

  韩敬哲可是村里的百宝箱,农闲时就喜欢摆弄机器,平时邻里乡亲,谁家的电器有问题了,都会请老韩帮忙。

  由于自己也种辣椒,那种腰酸背痛的感觉还让他记忆犹新,老韩就想着,能不能做一些工具减缓劳动强度呢?他虽然没上过一天学,可是,就是对机械感兴趣,他买来书籍自己研究,准备做一台移栽机,终于,经过了2个月的努力,一台初具雏形的机器诞生了。

  呵!还真做出来了!看看去!

  老韩的辣椒移栽机构造很简单,就是通过楔型结构的铲开沟,然后,把辣椒苗放入到烟花筒一样储苗筒内,让其自由落下,正好落入到开好的沟里。

  到底能不能成功?这台机器究竟能否减轻人们的负担,代替人们来完成劳动呢?期待哦~

篇三 大葱移栽机视频
大葱移栽机的设计与试验研究

篇四 大葱移栽机视频
大葱移栽机的现状与发展前景

篇五 大葱移栽机视频
大葱移栽机的现状与发展前景

   

大葱移栽机的现状与发展前景

 

222

胡  军,封  俊,曾爱军,秦  贵,王永涛 

(黑龙江八一农垦大学 工程学院,黑龙江 密山 158308;2.中国农业大学,北京 100094) 

 

[摘  要]  大葱原产于亚洲西部高寒地区,在我国已有3000多年的栽培历史,是一种重要的蔬菜和调味品,尤其在北方地区更是广为栽培。大葱的营养成分全面,尤以微量元素含量较高,有特殊的辛辣味,具有良好的调味和医疗功效。为此,概述了目前我国大葱移栽的生产状况,结合国内外移栽机的各种形式,提出了大葱移栽机存在的问题及发展建议。 [关键词]  大葱;移栽;挠盘 

[中图分类号]   S223.94      [文献标识码]  A         [文章编号]  1003─188X(2002)01─0039─03  

1  大葱的生产现状 

1.1  概述 

我国大葱栽培历史悠久,并形成了许多具有地方特色的、全国知名的大葱品种。每年大葱的种植面积较大,产量较高,并且出口韩国、日本和东南亚国家。随着改革开放的进一步深入,我国人民的温饱问题已基本解决,政府又制订了调整农村产业结构、提高土地的利用率和千方百计增加农民收入的政策,使得我国的蔬菜生产发生了很大变化,创建了一批具有地方特色的出口创汇蔬菜基地。其中,大葱品种就有山东章丘的大梧桐和天津的高脚白等,其种植面积也逐年扩大。山东章丘每年种植约4000~5000hm2,天津宝坻种植约3500 hm2,河北隆尧种植约3000hm2,安徽临泉约1500hm2,基本形成了地区规模化的种植经营。 1.2  大葱栽培农艺 

大葱的生产一般分为春季葱和秋季葱。春葱以播种为主,当年收获,主要为新鲜葱,产量较低;秋葱一般是头年秋天播种,到第2年夏季定植,入冬收获,储存为干葱,产量较高。在整个种植过程中,除了耕、整地环节使用机器外,其余基本是由人工劳动完成,尤以栽植过程最为辛苦。 

大葱栽培的农艺要求是:株距5~7cm,行距65~80cm,栽植深度6~10cm,保证葱苗的直立度,不窝根、不倒伏、栽植均匀。栽植大葱不必先翻地,因翻地后土壤疏松,不利于挖掘定植沟,只需先浅【大葱移栽机视频】【大葱移栽机视频】

耙除草,随时掘沟。每公顷施腐熟的农家肥6万~9万kg,进行深翻,使土肥充分混合,耙平后按80cm 行距南北开沟,沟深和沟宽各为30~35cm,沟底用细条镐刨松成宽15cm、深25~30cm的松土层。起苗时,抖净泥土,选苗分级,分别栽植。栽植时,大苗稀,每公顷约18万株;小苗密,每公顷约25.5万~30万株。大葱定植一般分为插葱法和排葱法。栽培短葱白类型多采用排葱法。其方法是:沿沟壁较陡的一侧按规定的株距摆放葱苗,使葱苗基部稍入沟底松土内,再用条镢从沟的另一侧倒土,埋至葱苗到葱秧外叶分叉处,用脚踏实,然后顺沟浇水;或先引水灌沟,水下渗后摆葱苗盖土。这种方法的优点是栽植快、用工少。栽植长葱白品种多用插葱法,又根据浇水先后分干插法和湿插法。其方法是:一手拿葱苗,一手握葱杈,用葱杈下端压住葱根基部,使葱苗垂直插入沟底松土内,深达外叶分叉处为度,而后浇水;或先浇水灌沟,水下渗后再插葱。湿插法因保留插空,空气流通,利于缓苗和植株直立。当葱苗的假茎高度不一致时,插葱应掌握“上齐下不齐”的原则,插葱深度必须以葱心叶高出沟面7~10cm为宜。但这种方法生产效率低,劳动强度高。大葱夏季定植期在5~7月份,时间较长,天气炎热,定植工作十分劳累,生产效率较低,每人每天只能栽植0.02~0.03hm2。因此,能够生产出一种适合大葱定植的机具是十分必要的。用它可以提高劳动生产率,减轻劳动强度,同时还能提高拖 

拉机的综合利用率和经济效益。 

苗板衔接。其工作过程是:作业时,随着机器的前进,开沟器破土成沟,栽植手将秧苗一株株地放入供秧传送带的放秧槽内;传送带再将秧苗运送到橡胶圆盘式栽植器的狭缝中,在压紧滚轮的作用下,橡胶盘压紧秧苗,苗随圆盘旋转夹运到开沟器开好的沟中;这时,土壤从开沟器的两侧流入沟中将苗埋上,同时橡胶盘脱离滚轮的作用松开秧苗,镇压轮由后向前滚来,将苗的两侧土壤压实,完成栽植过程。机器不断前进,栽植手连续不断地将苗送至传送带上,秧苗就成行地栽入土中。但是,该机只适应株距在13~26cm之间的作物栽培,对大葱的小株距移栽难以实现,而且供秧输送带和挠盘易磨损,使用寿命较短,因此,该机也没有应用在大葱移栽上。           

1.栽植器  2.秧箱 3.供秧传送带 4.开沟器  5.镇压轮 

图1  2ZG-2挠盘式玉米移栽机 

     1               2                 3 

2  国内外大葱移栽机的现状 

2.1 国内移栽机的现状 

    国内大葱在定植时,其植株一般高40~60cm,直径1~2cm,假茎(葱白)长也大约在20~30cm以上,而且裸根,葱头的须根极易缠绕。因此,大葱的栽植特点是植株高大、株距小、分秧困难。 

国内现有的各种移栽机主要用于玉米或甜菜(秧苗株高≤30cm,株距20cm左右)等作物的移栽。其栽植器的主要形式有:钳夹式、吊蓝式、挠性圆盘式、导苗管式和输送带式等。对于苗高30~60cm且株距要求仅为5~7cm的大葱的移栽,显然国内现有的移栽机不能适应。因为大葱植株高大,直落苗,导苗管式离地高度需加大,苗在自由下落过程中行程加长,植株高大,其重心相对地面较高而易造成下落过程中的偏转,从而影响栽植的直立度。所以,钳夹式、吊蓝式和输送带式栽植器不能满足小株距的要求。而能够满足小株距的栽培要求的只有挠性圆盘式的栽植器。 

挠盘式栽植器是由两个橡胶或薄钢板制成的挠性圆盘组成。工作时,两圆盘形成一定的夹角,并且同时转动,在确定的角度位置互相接触或张开。栽植时,用人工或输送带将秧苗对准圆盘的中心,放置在挠盘张开处。当圆盘转动到聚点位置时,便将秧苗夹紧,带到沟底。当秧苗直立于沟中时,秧苗在栽植圆盘松开瞬间由于有向后的速度,因而不会前倾。此时,镇压轮及时覆土镇压,保证秧苗直立栽植。我国研制的2ZG—2玉米、高粱移栽机就是采用这种栽植器,其双圆盘的结构是橡胶和钢板各一片,如图1所示。 

    该移栽机与工农-12型手扶拖拉机配套,作业时一次可完成开沟、栽苗、覆土、镇压等工序,栽植深度、株行距均可调节,采用人工分秧、传送带送秧。该机结构简单、操作容易、使用可靠,对苗茎的粗细适应性强。 

该移栽机主要由机架、供秧传送带、开沟器、栽植器、镇压轮、秧箱以及传动系统组成。供秧传送带为一封闭的、带有放秧槽的环形带,由橡胶或帆布制成。其上按一定距离间隔地粘有泡沫塑料块,形成宽度为2cm的放秧槽,如图2所示。栽植器由橡胶盘和金属盘组成,橡胶盘一侧有一组压紧滚轮,两盘用轴套间隔形成一个夹苗狭缝。橡胶盘的上部在弯杆和导轮的作用下下弯,并与供秧传送带的托

1.主动轮2.泡沫塑料块3.橡胶输送带4.秧苗5.被动轮【大葱移栽机视频】

图2  供秧传送带 

2.2  国外大葱移栽机的现状 

由于大葱主要在亚洲地区种植,因此相应的大葱移栽机也很少,大部分集中在日本。据调查,移栽机的机型有两种:一种是久保田公司生产的KN—

P6半自动大葱移栽机。该机结构较小,由一人操作驾驶,并自走在垄沟内,用于大葱的裸苗移栽。该机主要由机架、开沟器、栽植器、镇压轮、输送带、苗箱及动力系统组成。它采用双橡胶挠盘式移栽器,挠盘上部在导轮的作用下张开,下部在压紧滚轮的作用下闭合。工作时,由人工背向喂苗,通过横向输送带将秧苗送至张开的橡胶挠盘中间,在挠盘的转动下使秧苗旋转90°移栽入土,同时覆土镇压轮从两侧覆土并进行镇压。栽植深度一般在3~10cm可调,适合栽植15~40cm高的裸苗,生产效率在0.013~0.02hm2/h之间。该机结构简单、作业方便,但生产效率较低,而且橡胶挠盘使用寿命较短。 

另一种是由みのる公司生产的OP290/2100全自动大葱移栽机。该机由一人手扶驾驶走在已整好的垄台上,一次作业完成两行或四行移栽,主要用于大葱的盘育钵苗栽植作业。该机是采用双金属挠盘式移栽器,从喂苗到开沟、栽植、覆土和压密完全是自动化。工作中采用特殊穴盘育出的钵苗,钵苗高度在8~20cm。其工作过程是:装苗架上的钵苗秧盘自动进给,由专门的推苗机构向外推出一排钵苗,并通过曲柄连杆机构实现钵苗顺时针旋转180°,使钵苗放置到带分格的横向输送带上,完成喂苗作业。在横向输送带末端有一个输出爪,定时运动实现分苗,将钵苗送至两个相对旋转的纵向输送带之间,并向下运输到两个相对回转的挠性圆盘栽植器中。随着挠性圆盘的转动将钵苗逆时针旋转90°,同时钵体进入开沟器已开好的垄沟里,并由倾斜的覆土镇压轮进行扶正压实,完成整个栽植过程。该机的特点是实现了栽植过程的全部自动化,生产效率高,而且株距准确、可调。栽植深度在1~

 

[  参  考  文  献  ] 

 

[1]  农业机械编写组. 农业机械[M].  北京:人民出版社,1987. 232-236. [2]  杨树森. 蔬菜机械化[M]. 哈尔滨:东北农学院出版社,1982. 158-160. 

[3]  徐道东,赵章忠. 葱蒜类蔬菜栽培技术[M]. 上海:上海科学技术出版社, 1996. 156-166. [4]  韩占全. 纵横带式自动分苗装置的试验研究[D]. 北京:中国农业大学,2000. 

[5]  尚书旗,隋爱娜. 国外钵苗栽植机的几种类型及性能分析[J]. 农机与食品机械,1998,(1): 30-32. 

 

4cm范围内可以调节,株距在5~9cm范围内调节,生产效率为0.1hm2/小时。 

但是,以上两种机型未在我国推广的原因主要有两方面:一是由于日本的葱苗培育方式与我国的不同,多为钵苗。日本大葱大都采用温室穴盘育苗,从种子丸粒化、穴盘加装基质到穴内播种等环节都有配套机械。用基质加装机充填穴盘基质,用穴盘精密播种机进行穴盘穴孔播种,在葱苗生长的全过程内实现对温度、湿度、光照、喷水和施肥等的自动控制,形成完整的工厂化育苗体系。由此既保证了葱苗的质量,又可适时培育出大量健壮的葱苗。而我国现有的育苗作业均由人工完成,无法与其配套。二是进口机器价格很高,通用性差,很难适应中国农民的实际经济承受能力。 

3  大葱移栽机的研究开发方向 

综上所述,我国在针对大葱这样的小株距移栽机的研制开发上还是空白。要研制高效的大葱移栽机还必须与育苗技术结合起来,不能独立进行。我国研制的各种移栽机没有推广应用的主要原因之一,就是栽植机械与育苗技术脱节、移栽机与秧苗不配套。如果这个问题不解决,国产移栽机就难以推广。因此,研制开发自动化程度高、通用性好的大葱移栽机就必须首先解决育苗技术,才能更好地设计生产高效的移栽机。同时还应看到,从现阶段我国国情考虑,研制半自动化的移栽机在农村将有广阔的市场。半自动移栽机尽管栽植速度不快,还需要一定的人力,但是它结构简单、价格低、适应性好、使用方便,适应我国国情,所以,大葱移栽机暂时还是应研制半自动式的,以适应农村机械化的发展。 

篇六 大葱移栽机视频
几种典型的移栽机

篇七 大葱移栽机视频
大葱移栽机外文翻译

Trees Transplanting Machine Mechanics Model Establishment and

Shovel Blade Finite Element Analysis

Jie Zhou a, Zhipeng Li b, Qiang Huo c

Northeast Forestry University, Harbin 150040, China

azhou19880528@gmail.com, blizp386@sohu.com, c505675673@qq.com

Keywords: trees transplanting machine, shovel blade, mechanics model, finite element analysis. Abstract. As shovel blade is the main working part of a trees transplanting machine, its design greatly affect the quality of the work conducted by the machine. In the research reported in this paper, the stress and strain analyses of the shovel blade were conducted. To carry out the analyses, the mechanics model of the machine was established first, then a three-dimensional model was built within Pro/E, and the blade’s static mechanics was analysed using ANSYS. With the results obtained, the maximum working pressure of the slave blade was finally identified , to satisfy the requirements of actual working conditions.

Introduction

Trees or small saplings are often required to be transplanted to other places due to the modern city construction, environmental transformation, forestation, etc. To use human resources to transplant results in high labor intensity, low efficiency, and high cost. In order to satisfy the requirement of the market, a kind of trees transplanting machine with simple structure and high efficiency has been applied to dig holes, place seedlings and transplant [1]. A machine of high-automation is desirable in order to meet the demand for mechanical transplantation of the afforestation seedling. The depth and ball diameter of soil are determined according to the diameter at breast height of the trees. Statistics show that tree transplant with the machine, the survival rate of forestation is 95% or above. Compared with the traditional afforestation technology the application of the machine shortens seeding period of 2-3 years, increases the rate of trees growth to 57.7%, and improves economic efficiency to 98% [2]. Because the shovel blade is the main working part of a trees transplanting machine, its design greatly affect the quality of the work conducted by the machine. In order to enhance the quality of the shovel blade design, this research established the mechanics model of the tree transplanting machine and carried out the finite element analysis of the shovel blade to predict its maximum working pressure.

Structure and working principle

The trees transplanting machine mainly consists of main frame, lift frame, supporting frame, shovel knife, and connecting and hydraulic mechanisms. Its overall structure is shown in Figure 1. The notations used in the figure are as follows: ‘1’, the tree; ‘2’, shovel blade; ‘3’, a shovel lifting lever with a sliding slot sword; ‘4’, supporting frame; ‘5’, supporting frame connected to the structure; ‘6’, shovel knife; ‘7’, ground; ‘8’, foundation platform; ‘9’, the rotation axes; ‘10’, overall lifting devices of shovel knife with hydraulic control ; ‘11’, overall lift sword of shovel sliding channel.

The shovel blade of trees transplanting machine is located in the opening-closing state in the front of the shoveling trees. The left three slices of shovel blades and the right three slices of shovel blades are open with a certain angles, and move along the transplanting machine toward the trees. After the shovel blade moves slowly to surround the tree, the shovel blade closes slowly and moves downward, and then penetrates the ground to reach the deep soil . The edge is closed when the cutting of a full root ball of the directed globular is complete, which is similar to cutting watermelon skin. The digging of each piece of shovel blade is controlled by the shovel blade lifting lever moving along the sliding slot of the fixed frame. All of the movements are controlled hydraulically.

Fig. 1 Trees transplanting machine general structure schematic drawing

Mechanics Model of the Shovel Blade

The shovel blade installed on the supporting frame can move up and down. Because the shovel blades have uniform motion in the start-up process, the internal and external force generated by mutual balance can be calculated using the statics instead of dynamics [3].

Figure 2 shows the following nine forces of shovel blade which influence the resistance of the shovel blade: soil gravity W, the stillness of the soil lateral pressure P0, soil-shovel blade surface friction and adhesion (µ1 · N), shovel on both sides of pure cutting blade resistance N11 and N12, soil role on the knife edge in shovel to reverse force method N2, soil-shovel blade cutting edge surface friction (µ1 · N2), shovel goes on soil caused sword to pressure the soil additional method Pb , and the soil to shovel blade with reaction force N0

.

Fig. 2 Shovel knife acorns resistance analysis

The mechanics theory is applied for the projection into σ axis. The shovel resistance P of the shovel blade can be obtained using the formula below [4]:

HzP=2{R(k0⋅sinβ⋅ctgδ−β)∫γ(z)z(1−)dzH0

+µ[Pb+W⋅cosδ+P0sinδ+(N11z+N12z)sinδ

−(N11z+N12z)cosδ−2N2z⋅sinδ−2N2z⋅cosδ

+2µ⋅N2cos

+µN2⋅cosa0⋅sinω]+N2zsinδ−N2zsinδ−N2z⋅cosδ2 (1)

When the shovel blades used are identical, the forces that shovel oil cylinder on the shovel blade body tackle with shovel resistance P are equal.

Some researchers employ Simi-experience method, which is widely adapted in soil - machine system dynamics. The method utilizes the empirical formula [5] based on the similarity theory model to calculate the shovel blade resistance.

0.75530.2447P=0.1307X1.1884ρsC(13.9275+0.5633×100.0243β) (2)

where, X—— shovel blade displacement quantity(m); a0⋅cosω}+(N11z+N12z)cosδ+(N11z+N12z)sinδ2

s—— soil bulk density(g/cm2);

C—— soil cohesion(Pa);

B—— shovel blade around angle of half horn(°);

The experiment shows that the thickness of shovel blade will directly affect the result of compressive stress, which greatly influences the shovel resistance. To reduce the value of shovel resistance value the thickness of blade must be reduced. ρ

Finite Element Analysis

The three-dimensional moldle of shovel blade is established using Pro/E and the unit is set as meters Newton seconds (m·N·s); the three-dimensional model built is then imported into ANSYS as geometry models. The unit types are set as solid45 and the material is set as steel of 45#. Tensile strength σb=570~690MPa, elastic modulus E=206GPa, and Poisson's ratio µ=0.3[6]. The shovel blade is divided using discrimination grids and solid45. Through the mechanics analysis of shovel blade, it is assumed that the freedoms of the top and bottom are zero in the directions of X, Y, and Z. The number of the nodes of network division is 5,876.

The oil cylinder pressure of the shovel blade increases gradually during the digging process, so the stress should be within the allowable range as long as the oil cylinder pressure on the shovel blade does not exceed the maximum value when shovel reaches itsfinal position).

The shovel the force F[7] is calculated as follows:

F=DS (3)

where, D is the shovel blade oil cylinder pressure; S is the cylinder section area of shovel blade oil; S = 0.01767hm2. The cylinder force of shovel blade oil is 102833N in the final stage.

Within ANSYS, the stress image is acquired using the boundary conditions and the load as shown in Fig. 3. The maximum stress value obtained is 98.926 MPa, which does not exceed the requirement of the allowable stress of material. Observed from the convective stress, the point of stress concentration appears at the top and bottom of shovel blade edge. Structure in these places is weak, which has to be improved in the future.

Fig. 3 Shovel blade Stress of convective in final status

Concluding Remarks

The stress analysis for the shovel blade of the tree transplanting machine has been conducted. Due to the uniform motion of the shovel blade, only the hydraulic driving force and resistance, which the soil imposes on the shovel blade, are investigated in the research. The shovel blade’s mechanics model for the in-depth soil is built and the three-dimensional model is produced using Pro/E.

According to the results of finite element-stress analysis, the stress distribution of the shove blade of tree transplanting machine is reasonable. The Maximum forces of the shovel blade occurs in the final stage of digging process; and the maximum stress value is 98.926 MPa which satisfies the allowable requirements of materials.

References

[1] Zhengping Gu, Ruizhen Shen: submitted to World forestry research (2005)

[2] Jiangguo Yu, Jinwei Qu: Farm machinery research. 38-41 (2006), p.12

[3] Hua Zhang: Small nursery stock move kind of machinery research (Zhejiang University

Publications, China 2008)

[4] Juxin Qu. The digging machines at home and abroad research situation and development

trendNew study of digging machines for trees (China's forestry science research institute Publications, China 2009)

[5] Wenhua Yang,Hang Chen:4YS-600 style shovel blade of trees transplanting machine element

analysis(Farm machinery research Publications, China 2008)

[6] Daxian Cheng: Mechanical design manual edtied by Chemical industry Publications, Beijing

(2002)

[7] Femando J D,Daniel E V: Fuzzy control activisms pensions (Mechatronics Publications, pp

897-920 2000)

Advanced Design and Manufacture IV

10.4028//KEM.486

Trees Transplanting Machine Mechanical Model Establishment and Shovel Blade Finite ElementAnalysis

10.4028//KEM.486.234


大葱移栽机视频相关热词搜索:大葱移栽机 大葱移栽机价格

最新推荐成考报名

更多
1、“大葱移栽机视频”由中国招生考试网网友提供,版权所有,转载请注明出处。
2、欢迎参与中国招生考试网投稿,获积分奖励,兑换精美礼品。
3、"大葱移栽机视频" 地址:http://www.chinazhaokao.com/chuangyezixun/845255.html,复制分享给你身边的朋友!
4、文章来源互联网,如有侵权,请及时联系我们,我们将在24小时内处理!